

Design and Manufacturing Engineering Technology

PLAR Candidate Guide

Prior Learning Assessment and Recognition (PLAR)

Copyright

No part of the work(s) contained herein may be reproduced or copied in any form or by any means – graphic, electronic, or mechanical, including photocopying, recording, taping of information and retrieval systems – without written consent of Saskatchewan Polytechnic.

Prior learning credit options at Saskatchewan Polytechnic

See Get Credit for What you Know for important information about all options to get credit for prior learning at Sask Polytech, including PLAR, transfer credit, Canadian Armed Forces credit, and equivalency credit.

How to navigate this document

This document contains links to other document sections or webpages. To return to where you were from another section in this document, press the *ALT* key and *left arrow* key at the same time. To return to this webpage from another webpage, close the other webpage or click back on the browser tab for this document.

Contents of this guide

This guide contains the following specific PLAR information and tools for this program

- A. PLAR fees
- B. PLAR eligibility and options
- C. Dates when PLAR assessment is available
- D. Special directions for this program
- E. PLAR contact person
- F. Self-rating course outlines

A. PLAR fees

Fees for PLAR challenges are set to cover our costs for consultation, assessment, and related administrative tasks. PLAR fees are non-refundable and non-transferrable.

The PLAR fees policy is subject to change for each new academic year. Please see the **Cost** section on the PLAR webpage for current fee information.

B. PLAR eligibility and options

To be eligible for PLAR for courses in this program, you must first apply for admission and be accepted into the program. You must also consult with the PLAR contact person and be approved for PLAR assessment.

Course prerequisites and corequisites

Some courses have one or more other courses that must be completed first (prerequisite) or at the same time (corequisite). See course outlines in this guide to identify any pre or corequisites for each course. Discuss with your PLAR contact person how to deal with courses with co-requisites.

Block assessment

Some programs may assess a cluster of courses together in one block, which may save you time and effort. Ask the PLAR contact person whether there are any block assessment options in this program.

C. Dates when PLAR assessment is available

PLAR assessment for this program is available from Sept 1 to June 15 in each academic year.

All PLAR assessment must be completed by June 15 of each academic year.

D. Special directions for this program

- 1. Review the PLAR process and FAQs and the information in this guide.
- 2. **Self-rate** your learning for each course using the Course Outlines in this guide.
- 3. **Consult** with the PLAR contact person for PLAR approval. Be prepared to provide your resume, course self-ratings (see section F), and a partially completed PLAR application. If you are approved for PLAR, the contact person will sign your PLAR application and explain next steps.
- 4. Apply for admission to the program. See <u>directions</u> for applying.
- 5. **Register** for PLAR at <u>Registration/Enrolment Services</u> once you have signed approval on your PLAR Application Form. The PLAR fee will be added to your student account.
- 6. Finalize a detailed Assessment Plan with your assigned assessor.
- 7. **Complete** assessment before your PLAR registration expires.

E. PLAR contact person

Contact the person below to arrange a consultation **after** you have read this guide and general PLAR information **and** rated yourself for each course (see next session). Consultation may be by phone, online, or in person. Be prepared to provide your resume, course self-ratings, and a partially completed PLAR application. If agreement is reached to go ahead with PLAR, the contact person will sign approval on your PLAR application and explain the next steps. Admission to the program is required before you can register for PLAR.

Tim Muench

Design Manufacturing Engineering Technology Saskatchewan Polytechnic Phone: 306- 659-4361

Email: muench@saskpolytech.ca

F. Self-rating course outlines

Clicking on a course code below opens a page where you can rate yourself on the knowledge and skills assessed for PLAR credit. For Arts & Sciences courses, clicking on the course code opens another PLAR guide. The PLAR contact person for this program will refer you to another person to discuss PLAR for courses delivered by Arts & Sciences or another program/department.

COURSE CODE	COURSE NAME	Delivered by another department/program
CAD 101	CAD Drafting	
<u>COMP 113</u>	Spreadsheets for Engineering Technology	
DRFT 290	Basic Drafting	
ENGM 191	Applied Mechanics: Statics	
MAT 110	Mathematics for Engineering Technologies	Arts & Sciences
<u>SEM 101</u>	Technology Seminars	
<u>CAD 104</u>	Parametric Part Modelling	
ENGM 101	Strength of Materials	
ENGM 180	Materials of Engineering	
MAT 111	Calculus for Engineering Technologies	Arts & Sciences
TCOM 110	Workplace Communications	Arts & Sciences
THER 101	Thermo-Fluid Fundamentals	
CAD 105	Advanced Drafting and Assembly Modelling	
<u>CAD 200</u>	Assembly Modeling and Project	

COURSE CODE	COURSE NAME	Delivered by another department/program
MACH 191	Machine Shop Technology	MET -Diploma
SHOP 186	Mechanical Components and Systems Lab	MET - Diploma
TCOM 111	Technical Communication	Arts & Sciences
WELD 387	Welding for Technologists	MET - Diploma
<u>DSGN 280</u>	Mechanical Design 1	
ENGM 193	Applied Mechanics - Dynamics	
MANU 290	Manufacturing 1 - Metals	
MTRX 200	Manufacturing Networking Systems	
THER 200	Thermo-Fluid Systems 2	
<u>DSGN 282</u>	Mechanical Design 2	
MANU 202	Manufacturing 2-Plastics	
MANU 203	Quality Assurance	
MANU 291	Advanced Manufacturing	
PROJ 287	Project Management	
CAD 298	Engineering Seminars	
<u>CLTR 200</u>	Culture and Diversity	Arts & Sciences
<u>DSGN 208</u>	Concurrent Engineering 2	
<u>DSGN 283</u>	Mechanical Design Project	
MAU 204	Advanced Manufacturing Project	
PROJ 218	Capstone Project	

CAD 101 - CAD Drafting

You will focus on the concepts of computer-assisted drafting (CAD). Extensive hands-on training and lecture sessions will provide the knowledge you need to produce industrial standard CAD drawings, use 2D drafting and draw from 3D models. You will follow standard conventions while improving your skill and efficiency in using a CAD system.

Credit unit(s): 3.0
Prerequisites: none
Corequisites: none
Equivalent course(s): CAD 181

Use a c	heckmark (√) to rate yourself as follows for each learning outcome	ı,		
Compe Learnii None:	····	Competent	Learning	None
1. Ex	amine computer-assisted drafting (CAD) software environment.			
2. Co	onstruct drawings to conform to CAD Standards.			
3. Pe	erform basic editing and drawing creation techniques.			
4. De	emonstrate annotation techniques for engineering drawings.			
5. Co	onstruct templates for standardization of drawing output.			
6. Pe	erform advanced editing and drawing creation techniques.			
7. Ap	oply advanced drawing techniques.			
8. M	anage CAD generated data.			
9. Cr	eate 3D drawings.			

COMP 113 – Spreadsheets for Engineering Technology

You will gain an intermediate knowledge of electronic spreadsheets. You will use spreadsheet functions and tables to process information, construct charts based on engineering data, solve advanced numerical problems, and implement custom functions.

Credit unit(s):3.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a checkn	nark (√) to rate yourself as follows for each learning outcome	ا بـ		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Examine	spreadsheet software environment.			
2. Use spre	adsheet functions to process information.			
3. Construc	ct charts using engineering data.			
4. Solve ad	vanced numerical problems.			
5. Use tabl	e functionality to store and manipulate data.			
6. Impleme	ent customized functionality.			

DRFT 290 - Spreadsheets for Engineering Technology

You will apply the basic theory and skills needed to generate graphic representation of an idea, concept, or entity. You will apply descriptive geometry and its applications to develop orthographic drawings, dimensioning and pictorial drafting. You will construct auxiliary views and sectional views

Credit unit(s): 4.0
Pre and Co Requisites: None
Prerequisites: none
Corequisites: none

Equivalent course(s): DRFT 174 DRFT 181 GRPH 190

Use a checkm Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Identify	pasic drafting concepts.			
2. Introduc	e descriptive languages used to describe objects.			
3. Plan eng	ineering drawing title blocks.			
4. Discuss f	ile management strategies.			
5. Complet	e freehand engineering sketches.			
6. Generate	e orthographic drawings.			
7. Construc	t engineering drawings.			
8. Apply di	mensions to engineering drawings.			
9. Construc	t sectional view drawings.			
10. Apply Fit	tolerances.			
11. Produce	fastener drawings.			
12. Construc	t auxiliary views.			

ENGM 191 – Applied Mechanics: Statics

You will study how to use basic algebra and trigonometry to determine the forces in stationary machine and equipment members. The course content includes force systems, center of gravity, static friction and moment of inertia, and the application of these principles to engineering problems.

Credit unit(s): 3.0
Prerequisites: none
Corequisites: none

Equivalent course(s): ENGM 190, ENGM 191CE, MECA 120

Use a checkmark (✓) to rate yourself as follows for each learning outcome	<u>+</u>		
Competent: I can apply this outcome without direction or supervision. Learning: I am still learning skills and knowledge to apply this outcome. None: I have no knowledge or experience related to this outcome.	Competent	Learning	None
7. Demonstrate the solution method for engineering problems.			
8. Analyze forces, vectors, and resultants.			
9. Calculate the magnitude and direction of moments and couples.			
10. Evaluate unknown forces in two-dimensional equilibrium problems.			
11. Evaluate unknown forces in static structures and machines.			
12. Evaluate unknown forces in three-dimensional equilibrium problems.			
13. Determine the centroid and center of gravity of objects.			
8. Calculate the moment of inertia of objects.			
9. Evaluate unknown forces in frictional equilibrium problems.			

MAT 110 - Mathematics for Engineering Technologies

You will gain foundational knowledge of mathematical topics applicable to engineering technologies. You will study formula manipulations, factoring of algebraic expressions, geometry and trigonometry, exponents and logarithms, and functions and their graphs. This course is intended to build problem solving and critical thinking skills, and to prepare you for studies in calculus.

Credit unit(s): 4.0
Prerequisites: none
Corequisites: none

Equivalent course(s): MAT 101, MAT 110CE, MATH 182, MATH 193

Use a	checkmark (✓) to rate yourself as follows for each learning outcome	.		
Comp Learn None:	ng: I am still learning skills and knowledge to apply this outcome.	Competent	Learning	None
1.	Examine measurements, formulas, and functions.			
2.	Practice mathematical operations with algebraic expressions.			
3.	Apply principles of geometry.			
4.	Analyze trigonometric functions and vectors.			
5.	Examine systems of linear equations.			
6.	Examine algebraic equations and functions.			
7.	Analyze exponential and logarithmic functions.			

SEM 101 – Technology Seminars

Your orientation will include discussions regarding the role of technicians/technologists in the workplace and society. You will study time management skills, diversity in the workplace, principles of sustainability and safety requirements.

Credit unit(s): 1.0
Prerequisites: none
Corequisites: none

Equivalent course(s): ENGM 181 ETHC 183 ORTN 120 SEM 104

Use a checkr	mark (√) to rate yourself as follows for each learning outcome			
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Develop	study and time management skills.			
2. Recogni	ze diversity in the workplace.			
3. Recogni	ze principles of sustainability to work.			
4. Discuss	professional ethics, responsibility, and accountability.			
5. Discuss	the impact of technology on society.			
6. Describ	e workplace safety procedures.			

CAD 104 – Parametric Part Modelling

You will produce part drawings using three-dimensional (3-D) Computer Aided Drafting (CAD). You will study solid model construction methods.

Credit unit(s): 2.0

Prerequisites: CAD 101, DRFT 290

Corequisites: none Equivalent course(s): none

Use	a checkm	nark (√) to rate yourself as follows for each learning outcome	4		
	npetent: rning: ne:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.	Describe	methods of constructing a three-dimensional (3-D) model.			
2.	Develop	models using sketched features.			
3.	Generat	e placed features.			
4.	Create a	dvanced parts.			
5.	Demons	trate editing and modifying features.			
6.		t drawings to conform to Computer Aided Drafting (CAD) standards using 3-D g software.			

ENGM 101 – Strength of Materials

You will study the relationship between the external applied loads and the induced internal stresses in various structural members. You will also learn design and analysis techniques of axially loaded members, and beams. You will learn design and analysis techniques for torsionally loaded members, columns, and pressure vessels. You will consider the impact of multiple loading situations on the stress of structural members.

Credit unit(s): 4.0

Prerequisites: ENGM 191, ENGM 180

Corequisites: none

Equivalent course(s): ENG 192, ENGM 289

Use a checkn	nark (√) to rate yourself as follows for each learning outcome	±		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Examine	basic concepts of strength of materials.			
2. Design r	nembers under direct stress.			
3. Calculat	e deformation under axial loads and thermal stress.			
4. Calculat	e shearing forces and bending moments in beams.			
5. Analyze	stresses and deflections in beams due to bending.			
6. Design r	nembers for torsional shear stress and torsional deflection.			
7. Analyze	general combined stress states and Mohr's circle.			
8. Analyze	stress and buckling loads in columns.			
9. Analyze	the design of pressure vessels.			
10. Design b	olted connections to provide appropriate strength for structural members.			

ENGM 180 – Materials of Engineering

You will develop a practical understanding of the fundamental structure, properties, and supplied forms of common engineering materials. The course content will assist you in the evaluation and selection of materials suitable for given design requirements. You will focus on iron and iron alloys (steels), complimented with examination of other metals / alloys (aluminum, copper, etc.), ceramics, polymers, composite, and hybrid materials. You will also include areas and applications such as material corrosion, as well as non-destructive examination and material testing.

Credit unit(s): 4.0

Prerequisites: ENGM 191
Corequisites: ENGM 101

Equivalent course(s): ENG 191 ENGM 288

Use a	checkm	nark (√) to rate yourself as follows for each learning outcome	Ħ		
Comp Learn None	-	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.		pe how material structure, prior treatment, and operating environment nines and / or influences engineering material properties.			
2.		material properties (physical, mechanical, and chemical) in representative ering (industrial, manufacturing, construction, etc.) situations.			
3.	Differe	ntiate common supplied forms of engineering materials.			
4.	Identif	y the properties, application, and nomenclature of iron and iron alloys (steels).			
5.	Identif	y the properties, application, and nomenclature of non-iron metals and alloys.			
6.	Identif	y the properties, application, and nomenclature of polymeric materials.			
7.	Identif	y the properties, application, and nomenclature of ceramic materials.			
8.	Identif materi	y the properties, application, and nomenclature of composite and hybrid als.			
9.	Examir	ne common corrosion mechanisms, and methods of corrosion protection.			
10.	Describ	pe non-destructive examination methods for material evaluation.			
11.	Select	materials for an application based on product or design requirements.			

MAT 111 - Calculus for Engineering Technologies

You will gain knowledge of calculus topics applicable to engineering technologies. You will study derivatives, integrals and differential equations, and their applications. This course is intended to further build problem solving and critical thinking skills, and to demonstrate the importance of calculus in engineering practices.

Credit unit(s): 4.0
Prerequisites: MAT 110
Corequisites: none

Equivalent course(s): CALC 181, CALC 190, MAT 111CE, MAT 246

Use a checl	mark (√) to rate yourself as follows for each learning outcome	<u>+</u>		
Competent Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Examir	ne the derivative through the study of slopes and limits.			
2. Calcula	te derivatives of functions.			
3. Use fir	st and second derivatives to graph functions.			
4. Analyz	e technical problems involving rates of change and optimization.			
5. Examiı	ne the indefinite and definite integral.			
6. Calcula	te integrals of functions.			
7. Analyz	e technical problems with integration.			
8. Solve f	irst-order differential equations.			

TCOM 110 – Workplace Communications

You will examine the employability skills required in the workplace. You will discuss the communication process, and practice effective interpersonal communication techniques. You will use workplace writing and job search skills.

Credit unit(s): 1.0
Prerequisites: none
Corequisites: none
Equivalent course(s): TCOM 102

Use a checkm	ark (✓) to rate yourself as follows for each learning outcome	ا ب ا		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competen	Learning	None
1. Apply job-	related interpersonal and oral communication strategies.			
2. Apply wor	xplace writing skills.			
3. Use job se	arch skills.			

THER 101 – Thermo-Fluid Fundamentals

You will study typical primary thermal-fluid systems and their associated mechanical components. You will study media properties, pressure, energy, efficiency, and performance. You will assess the implication of energy transfer or specific systems configuration and design as seen through developed pressure, volume, force, or temperature changes. You will examine devices such as motors, engines and measuring devices.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a checkmark (✓) to rate yourself as follows for each learning outcome		ا ب			
	mpetent: rning: ne:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.	Describe	fundamental thermal-fluid system concepts, including unit systems.			
2.	Examine	fluid pressure.			
3.	Use med	ia properties for pure substances and mixtures.			
4.	Calculate	e forces, stability, and equilibrium conditions within thermal-fluid systems.			
5.	Examine	the primary modes of heat transfer.			
6.	Analyze principle	non-flow processes and systems from the perspective of conservation of energy s.			

CAD 105 - Advanced Drafting and Assembly Modelling

You will create customized part and assembly drawings. You will create customized annotation in drawings. You will create assembly models and verify that they operate properly. You will create assemblies with proper tolerances and fits. You will use software tools to create advanced parts.

Credit unit(s):2.0Prerequisites:CAD 104Corequisites:noneEquivalent course(s):none

Use a checkmark (√) to rate yourself as follows for each learning outcome		4		
Competent Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Demor	astrate advanced annotation features.			
2. Prepar	e Geometric Dimensions and Tolerances.			
3. Create	a three-dimensional (3-D) model of an assembly.			
4. Prepar	e assembly model documentation.			
5. Create	advanced parts using design modelers.			
6. Analyz	e a design.			

CAD 200 - Assembly Modeling and Project

You will create assigned assembly models and a student selected project and then learn the various ways to document assembly/disassembly procedures. You will apply Geometric Dimensions and Tolerances to the project you have selected. You will produce a set of drawings that would allow for the building of this project. You will produce an animation of the project.

Credit unit(s): 3.0

Prerequisites: CAD 104, CAD 105

Corequisites: none Equivalent course(s): none

Use a checkmark (✓) to rate yourself as follows for each learning outcome		ا ا		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Use nam	ing and file structure for engineering drawing project.			
2. Constru	et organization of project from part to subassembly to assembly.			
3. Construc	ct plastic parts and freeform surface models.			
4. Prepare	fully documented drawing set for project.			
5. Prepare	animation of project.			

MACH 191 - Machine Shop Technology

You will gain an understanding of machine shop principles and practices. This course will serve as a foundation for further studies in manufacturing. In addition to lectures and demonstrations, you will receive extensive hands-on experience.

Credit unit(s): 2.0
Prerequisites: none
Corequisites: none
Equivalent course(s): MACH 120

Use a checkm	eckmark (✓) to rate yourself as follows for each learning outcome			
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Apply pr	inciples of metrology.			
2. Perform	machine shop operations.			
3. Describe	machining processes.			
4. Describe	computer numerical control machining.			
5. Explain r	nachining costs.			

SHOP 186 – Mechanical Components and Systems Lab

You will focus on the application and operation of the components and systems rather than their use in the design process. You will work with and disassemble or assemble some of the components (others will be demonstrated for you). Some of the items you will investigate include bearings, shafts, chain belt and gear drives, hydraulic pumps, motors and cylinders, pneumatic systems, conveyors, and pneumatic and hydraulic flow and pressure control valves.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a checkmark (✓) to rate yourself as follows for each learning outcome		nark (√) to rate yourself as follows for each learning outcome	<u>_</u>		
	mpetent: rning: ne:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.	Describe	bearings and seals.			
2.	Install be	earings and seals.			
3.	Describe	drives, pneumatics, and conveyors.			
4.	Describe	hydraulics.			
5.	Assembl	e hydraulics.			

TCOM 111 – Technical Communication

You will develop technical research, writing, and presentation skills. This course will establish understanding and appropriate application of scientific and technical writing standards (e.g.: IEEE Citation Reference, IEEE Editorial Style Manual). You will examine and produce a variety of technical documents.

Credit unit(s): 2.0
Prerequisites: none
Corequisites: none
Equivalent course(s): TCOM 103

Use a checkm	ark (√) to rate yourself as follows for each learning outcome	<u>+</u>		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Conduct	research for technical documents.			
2. Use corr	ect grammar and technical style.			
3. Create to	echnical documents.			
4. Present	echnical information.			

WELD 387 – Welding for Technologists

You will observe and perform welding, thermal cutting and metal forming operations. You will develop an understanding of processes rather than skill. Supervised hands-on training will help you develop an understanding of Shielded Metal Arc Welding, Gas Metal Arc Welding, Flux Cored Arc Welding, Gas Tungsten Arc Welding, Oxy-Fuel Welding and Submerged Arc Welding. Your metal cutting activities will include Oxy-fuel Cutting and Plasma Arc Cutting. You will perform metal forming activities on a plate roll, press brake and structural roll.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):WELD 102

Use a checkn	a checkmark (\checkmark) to rate yourself as follows for each learning outcome			
Competent: Learning: None:	····	Competent	Learning	None
1. Describe	the oxy-fuel processes and their applications.			
2. Describe	the gas metal arc welding process and its applications.			
3. Describe	the flux cored arc welding process and its applications.			
4. Describe	the shielded metal arc welding process and its applications.			
5. Describe	the gas tungsten arc welding process and its applications.			
6. Describe	the submerged arc welding process and its application.			
7. Describe	the plasma arc cutting process and its applications.			
8. Describe	press brake procedures.			
9. Describe	plate rolling procedures.			
10. Describe	procedures for rolling structural members.			

DSGN 280 - Mechanical Design 1

You will learn the techniques of design, analysis and selecting various machine components including belt and chain drive components, wire rope, springs, fasteners, bolted connections, welded joints and combined stresses. You will learn traditional design methods and then use computer solutions extensively to augment the design process.

Credit unit(s): 3.0

Prerequisites: COMP 113, ENGM 101, CAD 105, SHOP 186

Corequisites: none Equivalent course(s): none

Use a checkm	Use a checkmark (✓) to rate yourself as follows for each learning outcome			
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Describe	the mechanical design process.			
2. Design n	nembers for fatigue strength for mechanical drive systems.			
3. Select be	elt drives for mechanical drive systems.			
4. Select ch	ain drives for mechanical drive systems.			
5. Select w	re rope drives for mechanical drive systems.			
6. Select fa	stener and bolted connections.			
7. Design h	elical springs.			

ENGM 193 – Applied Mechanics - Dynamics

You will focus on kinematics and kinetics. In kinematics, you will analyze the geometry of rectilinear, circular and general plane motions. In kinetics, you will analyze the forces and movements associated with motion using Newton's laws, the work-energy-power method, and the impulse-momentum method. You will learn how to solve engineering problems involving motion only and the forces causing that motion. You will analyze machine element linkages and vibrations using manual methods and computer software.

Credit unit(s): 4.0

Prerequisites: ENGM 191
Corequisites: none
Equivalent course(s): ENGM 290

Use a checkmark (✓) to rate yourself as follows for each learning outcome		ا پ		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Analyze	rectilinear motion of bodies.			
2. Analyze	angular motion of bodies.			
 Calculat motion. 	e values for velocity, distance, and acceleration of moving bodies in plane			
4. Use Nev	vton's three laws of motion to describe inertia.			
5. Analyze	moving bodies using the concept of work, energy and power.			
6. Analyze	moving bodies using the method of impulse and momentum.			
7. Analyze	motions involving linkages using computer software.			
8. Discuss	mechanical vibration.			

MANU 290 - Manufacturing 1 - Metals

You will study the merits and limitations of the manufacturing and fabrication industry. You will study the use of engineering principles to solve manufacturing and fabrication problems. You will tour various manufacturing operations to gain a broad view of the different types of manufacturing.

Credit unit(s): 4.0

Prerequisites: ENGM 101, ENGM 180, MACH 191, WELD 387

Corequisites: none Equivalent course(s): none

Use a checkn	nark (√) to rate yourself as follows for each learning outcome	 		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	Q Q
1. Describe	the fabrication processes used in producing metal and plastic products.			
Use mea quality c	surement techniques, tolerances, and statistical analysis in the application of ontrol.			
3. Analyze	quality and manufacturing problems using normal distribution.			
4. Mold de	sign and casting processes.			
5. Calculate	e the forces involved in hot metal forming processes.			
6. Compare	e cold metal forming techniques to other fabrication techniques.			
7. Compare	e various types of cold metal working machines and tools.			
8. Calculate	e the forces and power involved in cold metal forming processes.			
9. Compare	e basic metal machining processes and where they would be used.			
10. Calculate	e machining time.			
11. Compare	e basic metal welding processes and where they would be used.			
12. Design fi	llet welds.			

MTRX 200 – Manufacturing Networking Systems

You will study background theory of networking fundamentals and the basics of managing engineering documentation. You will examine Ethernet technology in relation to its use in the Industrial Internet of Things (IIoT). You will learn the requirements to manage a system of computers in an engineering and manufacturing environment.

Credit unit(s): 4.0

Prerequisites: ELTR 287, MTRX 101

Corequisites: none Equivalent course(s): none

Use	a checkm	ark (√) to rate yourself as follows for each learning outcome	ıt		
Com	petent:	I can apply this outcome without direction or supervision.	Competent	ing	
Lear	ning:	I am still learning skills and knowledge to apply this outcome.	ᇤ	Learning	None
Non	e:	I have no knowledge or experience related to this outcome.	ဒ	ĽĚ	2
1.	Discuss i	ntroductory networking concepts.			
2.	Discuss r	networking terminology and devices.			
3.		he Open Systems Interconnection (OSI) and Transmission Control			
	Protocol	/Internet Protocol (TCP/IP) models to the transport level.			
4.	Set up Lo	ocal Area Network (LAN) cabling and wireless connectivity.			
5.	Set up sv	vitching and wireless routing.			
6.	Employ r	network security to wired and wireless networks.			
7.	_	engineering documentation using both traditional and Computer Aided Drafting sed methods.			
8.	Estimate	software and hardware requirements for an engineering environment system.			
9.	Select ha	ardware and software for engineering projects.			
10.	Configur	e an operational engineering environment system in a networked environment.			
11.	Manage	an engineering environment system in a networked environment.			
12.	Set up a	file server based network.			

THER 200 – Thermo-Fluid Systems 2

You will study flowing fluids and typical flow thermal-fluid systems. You will analyze piping systems and evaluate their associated components and equipment. You will compare heat engines and refrigeration performance. You will study concepts and devices in hydraulics and pneumatics.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a check	mark (√) to rate yourself as follows for each learning outcome	ا بـ		
Competents Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Describ	e the characteristics and properties of flowing fluids.			
2. Analyzo	e flow processes and systems from the perspective of conservation of energy les.			
3. Calcula	te power requirements for a series piping systems.			
4. Analyz	e convective and transient heat transfer for industrial settings.			
5. Discuss	operation of heat engines and refrigeration systems.			
6. Describ	e industrial pneumatic and hydraulic systems.			

DSGN 282 - Mechanical Design 2

You will learn the techniques of design, analysis and selecting various machine components. You will study bearings, shafts, springs, couplings, gears, clutches, brakes, and cams. You will examine traditional design methods and then use computer solutions extensively to augment the design process.

Credit unit(s): 4.0

Prerequisites: DSGN 280
Corequisites: none
Equivalent course(s): none

Use a checkn	nark (√) to rate yourself as follows for each learning outcome	Į.		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Select p	ain bearings for mechanical drive systems.			
2. Select ro	olling contact bearings for mechanical drive systems.			
3. Select co	ouplings for mechanical drive systems.			
4. Select sp	our gears for mechanical drive systems.			
5. Select cl	utches and brakes for mechanical drive systems.			
6. Determi	ne dimensions for shafts.			
7. Select m	otors for mechanical drive systems.			

MANU 202 - Manufacturing 2-Plastics

You will learn different processes for the manufacture of plastics. You will learn the preferred method of post processing once a product is made. You will select the best process for types of products.

Credit unit(s): 2.0

Prerequisites: CAD 287, ENGM 101, MANU 201, MANU 290

Corequisites: none Equivalent course(s): none

Use a checkr	nark (√) to rate yourself as follows for each learning outcome	4		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Describe	e polymer casting processes.			
2. Describe	e polymer molding processes.			
3. Describe	e polymer additive and subtractive manufacturing processes.			
4. Select a	n appropriate process for material and economic considerations.			
5. Describe	e post processing of polymers.			

MANU 203 - Quality Assurance

You will study quality assurance in a manufacturing environment. You will use statistical sampling and analysis tools used to achieve and verify quality goals.

Credit unit(s): 3.0

Prerequisites: MAT 111, MANU 290

Corequisites: none Equivalent course(s): MANU 293

Use a checkm	nark (√) to rate yourself as follows for each learning outcome	<u> </u>		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Discuss of	customer-focused basic quality concepts.			
2. Discuss of	quality standards.			
3. Examine	quality management.			
4. Solve qu	ality problems using statistical calculations.			
5. Analyze	chronic problems using continuous improvement problem solving techniques.			
6. Design fo	or quality.			
7. Analyze	quality using Statistical Process Control (SPC).			
8. Analyze	supply chain management principles.			
9. Evaluate	acceptance based on inspection results.			

MANU 291 - Advanced Manufacturing

You will develop an understanding of flexible automation using robotics. You will discuss the technology, observe videos of several industrial applications, and attend industry tours to observe robotic systems in industry. You will learn how to program an industrial robot to perform various tasks. To gain an overall understanding of robotics, you will investigate end-of-arm tooling, parts presentation, and cost justification. You will receive an introduction to other related technology including machine vision systems, industrial sensors, and data acquisition and control.

Credit unit(s): 2.0

Prerequisites: WELD 387, CAD 105, MTRX 101, MTRX 102

Corequisites: none Equivalent course(s): none

Use	e a checkn	nark (√) to rate yourself as follows for each learning outcome	٠		
	mpetent: rning: ne:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.	Assess s	uitability of robotic applications.			
2.	Apply se	nsors and data acquisition in robotic systems.			
3.	Recogniz	ze machine vision applications.			
4.	Design s	tructured robot programs.			
5.	Design ji	gs, fixtures, and clamping.			
6.	Design a	robotic part fabrication system.			

PROJ - 287 - Project Management

You will be introduced to project management. You will examine the basic theory of project planning and control, from project initiation to project close out. You will apply research techniques and various tools to practice project management theory in a variety of projects. You will practice skills using project management software.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):MGMT 222

Use a checkn	nark (√) to rate yourself as follows for each learning outcome	ايرا		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Discuss	project management concepts.			
2. Explain t	he process to initiate a project.			
3. Create a	project plan using project management software.			
4. Explain t	he methods used to execute a project plan.			
5. Explain ı	monitoring requirements of a project.			
6. Discuss	closing requirements of a project.			

CAD 298 – Engineering Seminars

You will investigate advanced features of Computer Aided Drafting (CAD) software used in the program and in local industry. You will attend presentation with local users that will share their product expertise. You will be introduced to incremental upgrades to software. You will receive an introduction to other relevant software.

Credit unit(s):2.0Prerequisites:CAD 105Corequisites:noneEquivalent course(s):CAD 286

Use a checkn	hark (\checkmark) to rate yourself as follows for each learning outcome	ايرا		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competen	Learning	a con
1. Impleme	ent advanced features for Parametric Modellers.			
2. Operate	current software applications.			
	new ideas and current trends in the Computer Aided Drafting (CAD) and er Aided Manufacturing (CAM) industry.			

CLTR 200 – Culture and Diversity

Your studies will focus on the many dimensions of culture and approaches to promoting inclusion and innovation. You will explore culture in Canadian society as it pertains to Indigenous and immigrant populations. You will also examine the correlation between culture and diversity.

Credit unit(s):2.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

ose a checkn Competent:	nark (✓) to rate yourself as follows for each learning outcome I can apply this outcome without direction or supervision.	Competent	gui	
earning: None:	I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Comp	Learning	:
1. Discuss l	now cultural dimensions shape the diversity of Canada.			
	the prominent dimensions of culture in Canadian society such as tradition, relations, and employment.			
 Describe interact. 	the interrelationships produced when the dimensions of various cultures			
 Describe populati 	the dimensions of culture as it relates to Indigenous and immigrant ons.			
5. Discuss t	the correlation between culture, diversity, and innovation.			

DSGN 208 – Concurrent Engineering 2

You will fabricate a product prototype that was designed in the Concurrent Engineering course. You will complete an engineering report and prepare and present a final oral presentation of your project.

Credit unit(s):1.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a checkm	ark (√) to rate yourself as follows for each learning outcome	4		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Develop	product prototype.			
2. Develop	methods of Design for Manufacturing and Assembly (DFMA).			
3. Present	a project.			

DSGN 283 – Mechanical Design Project

You will learn how to develop and evaluate several components in the design of a machine. You will select and integrate bearings, shafts, springs, couplings, gears, clutches, brakes, and cams into a comprehensive project.

Credit unit(s):3.0Prerequisites:DSGN 282Corequisites:noneEquivalent course(s):none

Use a checkmark (√) to rat	e yourself as follows for each learning outcome		
Learning: I am still lear	his outcome without direction or supervision. In outcome without direction or supervision.	Learning	None
1. Select components o	f a mechanical, gear type power transmission system.		
2. Design the interface	fit for multiple components.		
3. Generate component	tolerances and limit dimensions on key dimensions.		
4. Verify final design fo	or its intended purpose.		
5. Prepare assembly dra	awings of project.		
6. Design components	not considered in earlier analysis.		
7. Prepare the technical	report.		

MANU 204 – Advanced Manufacturing Project

You will integrate the knowledge from the Advanced Manufacturing course into a design project where a fabricated metal part will be produced. Your project will include part layout for laser cutting, design and fabrication of jigs, robot programming, costing, and weld jobs.

Credit unit(s):1.0Prerequisites:noneCorequisites:noneEquivalent course(s):none

Use a checkm	ark (√) to rate yourself as follows for each learning outcome	ا بـ		
Competent: Learning: None:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1. Impleme	nt structured robot programs.			
2. Fabricate	gigs, fixtures, and clamping.			
3. Specify c	ost justification.			
4. Impleme	nt a robotic part fabrication system.			

PROJ 218 - Capstone Project

You will focus on the application of basic knowledge in the design of "real life" engineering problems from local industries. Based on your knowledge of several previous and concurrent courses, you will learn how to select and define a technical project, find design solutions for the problem and then, prepare and present your technical solutions to the industrial client.

Credit unit(s): 4.0

Prerequisites: Year 1 - Semester 1, Year 1 - Semester 2, Year 1 - Semester 3, Year 2 - Semester 4, Year 2 -

Semester 5, CAD 298(concurrent), CLTR 200(concurrent), DSGN 208(concurrent), DSGN

283(concurrent), MANU 204(concurrent)

Corequisites: none Equivalent course(s): CAD 285

Use	a checkn	nark (√) to rate yourself as follows for each learning outcome	t		
	npetent: rning: ne:	I can apply this outcome without direction or supervision. I am still learning skills and knowledge to apply this outcome. I have no knowledge or experience related to this outcome.	Competent	Learning	None
1.	Select ar	n industrial project.			
2.	Conduct	a feasibility study on alternate solutions.			
3.	Create a	solution to an industrial project.			
4.	Prepare	a set of working drawings.			
5.	Produce	a technical report to communicate the solutions to the industrial client.			
6.	Outline	project solutions in an oral presentation.			